2014年5月7日星期三

Success with DC motors


The first commutator DC electric motor capable of turning machinery was invented by the British scientist William Sturgeon in 1832.[12] Following Sturgeon's work, a commutator-type direct-current electric motor made with the intention of commercial use was built by the American inventor Thomas Davenport, which he patented in 1837. The motors ran at up to 600 revolutions per minute, and powered machine tools and a printing press.[13] Due to the high cost of primary battery power, the motors electric motor were commercially unsuccessful and Davenport went bankrupt. Several inventors followed Sturgeon in the development of DC motors but all encountered the same battery power cost issues. No electricity distribution had been developed at the time. Like Sturgeon's motor, there was no practical commercial market for these motors.

In 1855, Jedlik built a device using similar principles to those used in his electromagnetic self-rotors that was capable of useful work.[5][11] He built a model electric vehicle that same year.The first commercially successful DC motors followed the invention by Zénobe Gramme who had in 1871 developed the anchor ring dynamo which solved the double-T armature pulsating DC problem. In 1873, Gramme found that this dynamo could be used as a motor, which he demonstrated to great effect at exhibitions in Vienna and Philadelphia by connecting two such DC motors at a distance of up to 2 km away from each other, one as a generator.

In 1886, Frank Julian Sprague invented the first practical DC motor, a non-sparking motor that maintained relatively constant speed under variable loads. Other Sprague electric inventions about this time greatly improved grid electric distribution (prior work done while employed by Thomas Edison), allowed power from electric motors to be returned to the electric grid, provided for electric distribution to trolleys via overhead wires and the trolley pole, and provided controls synchronous motor
systems for electric operations. This allowed Sprague to use electric motors to invent the first electric trolley system in 1887–88 in Richmond VA, the electric elevator and control system in 1892, and the electric subway with independently powered centrally controlled cars, which were first installed in 1892 in Chicago by the South Side Elevated Railway where it became popularly known as the "L".

Sprague's motor and related inventions led to an explosion of interest and use in electric motors for industry, while almost simultaneously another great inventor was developing its primary competitor, which would become much more widespread. The development of electric motors of acceptable efficiency was delayed for several decades by failure to recognize the extreme importance of a relatively small air gap between rotor and stator. Efficient designs have a comparatively small air gap.ac electric motor The St. Louis motor, long used in classrooms to illustrate motor principles, is extremely inefficient for the same reason, as well as appearing nothing like a modern motor.

Application of electric motors revolutionized industry. Industrial processes were no longer limited by power transmission using line shafts, belts, compressed air or hydraulic pressure. Instead every machine could be equipped with its own electric motor, providing easy control at the point of use, and improving power transmission efficiency. Electric motors applied in agriculture eliminated human and animal muscle www.dongfeng-motor.com power from such tasks as handling grain or pumping water. Household uses of electric motors reduced heavy labor in the home and made higher standards of convenience, comfort and safety possible. Today, electric motors stand for more than half of the electric energy consumption in the US.

没有评论:

发表评论